Homographies
A homography \(\mathrm{H}\) maps a set of points \(\mathbf{x}=(x\quad y\quad 1)^\top\) to another set of points \(\mathbf{x}^\prime = (x^\prime\quad y^\prime\quad 1)^\top\).
\begin{align*}
\mathbf{x}^\prime &\sim \mathrm{H}\mathbf{x} \\
\lambda\begin{pmatrix}x^\prime\\y^\prime\\ 1 \end{pmatrix} &= \begin{pmatrix}h_{11}&h_{12}&h_{13}\\h_{21}&h_{22}&h_{23}\\h_{31}&h_{32}&h_{33}\\ \end{pmatrix}\begin{pmatrix}x\\y\\ 1 \end{pmatrix}\\
\lambda x^\prime &= h_{11}x+h_{12}y+h_{13} \\
\lambda y^\prime &= h_{21}x+h_{22}y+h_{23} \\
\lambda &= h_{31}x+h_{32}y+h_{33} \\
\text{So,} &\\
x^\prime &= \frac{h_{11}x+h_{12}y+h_{13}}{h_{31}x+h_{32}y+h_{33}} \\
y^\prime &= \frac{h_{21}x+h_{22}y+h_{23}}{h_{31}x+h_{32}y+h_{33}} \\
\end{align*}
Rewriting \((x,y,x^\prime,y^\prime) \rightarrow (x_1,x_2,x^\prime_1,x^\prime_2)\), the equation in the linear form,
\begin{align*}
-h_{11}x_1-h_{12}x_2-h_{13}+h_{31}x_1x_1^\prime+h_{32}x_2x_1^\prime+h_{33}x_3x_1^\prime &= 0 \\
-h_{21}x_1-h_{22}x_2-h_{23}+h_{31}x_1x_2^\prime+h_{32}x_2x_2^\prime+h_{33}x_3x_2^\prime &= 0 \\
\end{align*}
Now the equations become,
$$\begin{pmatrix}a_x\\a_y\end{pmatrix}h = 0$$
where,
\begin{align*}
a_x &= (-x_1 -x_2 -1 \quad 0 \quad 0 \quad 0 \quad x_1x_1^\prime \quad x_2x_1^\prime \quad x_1^\prime)\\
a_y &= ( \quad 0 \quad 0 \quad 0 \quad -x_1 -x_2 -1\quad x_1x_2^\prime \quad x_2x_2^\prime \quad x_2^\prime)\\
h &= (h_{11}\quad h_{12}\quad h_{13}\quad h_{21}\quad h_{22}\quad h_{23}\quad h_{31}\quad h_{32}\quad h_{33})^\top \\
\end{align*}
The matrix has 8 dof (since \(h_{33}=1\)), each point gives 2 sets of equations, 4 points are requiered to solve the matrix \(h\) uniquely with SVD (Singular Value Decomposition).
References